

Study of the mechanical and viscoelastic properties of complex heterogeneous polymeric systems at the nanoscale and automated population identification

Pierre Nickmilder

No data type limitation

X (µm)

Today ...

Aim

- Automatised multidimensional analysis
- Machine Learning
 - Clustering of the data
 - Force curve analysis

« **Py**thon Code for Approach and Retract force curve analysis of Organic and hybrid Soft materials » pyCAROS

Forum des microscopies à sonde locale 2023 - 04-07 avril - Obernai

(Kmeans, GMM)

(Tabor, R²)

Test sample PS-PCL

ROI selection

Automatized Analysis

« by hand » analysis

4

Université de Mons

High Impact Polypropylene (HiPP)

Industrial nanocomposite samples, used in the manufacture of bumpers

Inclusions dissipate energy

Importance of the **morphology** Importance of the **charge crystallinity control**

Mechanical and viscoelastic nanoscale analysis

PFT

nDMA

Mechanical properties: Peak Force Tapping (PFT)

LONE

HiPP

Peak Force Tapping

PyCAROS clustering algorithm: KMeans, GMM

Random centroids C_1^0 et C_2^0

 $I_1^0 \underbrace{\overbrace{}}^{0} \underbrace{\overbrace{}}^{\circ} \underbrace{\overbrace{}} \underbrace{\overbrace{}}^{\circ} \underbrace{\overbrace{}} \underbrace{\overbrace{}}^{\circ} \underbrace{\overbrace{}} \underbrace{I} \underbrace{}$

 $I_{1}^{2} \underbrace{\begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot c_{1}^{2} \end{array}}_{I_{1}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot \cdot \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot c_{2}^{2} } \underbrace{\begin{array}{c} \cdot c_{2}^{2} \end{array}}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot c_{2} \end{array}}\\}_{I_{2}^{2}} \underbrace{\begin{array}{c} \cdot c_{2} \end{array}}_{I_$

Centroids define classes I_1^0 et I_2^0

Classes define new centroids

 C_1^1 et C_2^1 New classes I_1^1 et I_2^1

 C_1^2 et C_2^2 Iteration I_1^2 et I_2^2

Optimized cluster inertia

Clustering of multiple channels

Channel selection: how to do it?

Forum des microscopies à sonde locale 2023 - 04-07 avril - Obernai

12 Université de Mons

How to chose the good one?

Forum des microscopies à sonde locale 2023 - 04-07 avril - Obernai

Modulus mapping

JKR, DMT ... or any available mechanical model

Viscoelastic properties: nano-DMA

Frequency modulation when the tip is in contact with the surface

FFV = **single** frequency

cartography

nano-DMA = frequency **rampscript**

- spectroscopy
 - Storage modulus (E')
 - Loss modulus (E'')
 - Tan delta (E''/E')
 - ... 15 channels available !

Nano-DMA: Clustering

Nano-DMA: Clustering

Number of data for the fit too small ... But still mapped in Nanoscope Analysis!

UMONS Université de Mons

Conclusions

We illustred the power of pyCAROS on an complex (industrial) sample

Clustering-multidimensional analysis

Force curve analysis

Force curve quality analysis by « deep » learning (see Thomas' Poster)

15

1.0

Forum des microscopies à sonde locale 2023 - 04-07 avril - Obernai

pyCAROS

0.10

Aknowledgement

Lanti Yang

Philippe Leclere Thomas De Muijlder

LPNE

Machine Learning: Feature selection

Quality of the acquisition

512x512 = 26214 force curves

Université de Mons

24

Supervised Machine Learning

Forum 2023 - Obernai

Université de Mons

Machine Learning: Feature selection

Machine Learning: Feature selection

Forum 2023 - Obernai

perspectives

Peak Force Tapping: the clustering

Forum 2023 - Obernai

Université de Mons 30

10.0

80

Default name: Cluster division

Modulus mapping

DMT ... or any available mechanical model

Forum 2023 - Obernai